
1!
CIS 422/522

CIS 422/522 Winter 2013! 1!

Midterm Review!

The Story of SE!
in Words and Pictures!

CIS 422/522 Winter 2013! 2!

The “Software Crisis”!

•  Have been in “crisis” since the advent of big software
(roughly 1965)!

•  What we want for software development!
–  Low risk, predictability!
–  Lower costs and proportionate costs!
–  Faster turnaround!

•  What we have:!
–  High risk, high failure rate!
–  Poor delivered quality!
–  Unpredictable schedule, cost, effort!
–  Examples: Ariane 5, Therac 25, Mars Lander, DFW Airport, FAA

ATC etc.!
•  Characterized by lack of control!

CIS 422/522 Winter 2013! 3!

Large System Context!

•  Discuss issues in terms of large, complex systems!
–  Multi-person: many developers, many stakeholders!
–  Multi-version: intentional and unintentional evolution!

•  Quantitatively distinct from small developments!
–  Complexity of software rises exponentially with size!
–  Complexity of communication rises exponentially!

•  Qualitatively distinct from small developments!
–  Multi-person introduces need for organizational functions,

policies, oversight, etc.!
–  More stakeholders and more kinds of stakeholders!

•  We can only approximate this in our projects!

CIS 422/522 Winter 2013! 4!

Implications: the Large System Difference!

•  Small system development is driven by technical issues
(I.e., programming)!

•  Large system development is dominated by
organizational issues !
–  Managing complexity, communication, coordination, etc.!
–  Projects fail when these issues are inadequately addressed!

•  Lesson #1: programming ≠ software engineering!
–  Techniques that work for small systems fail utterly when scaled

up!
–  Programming alone won’t get you through real developments or

even this course!

2!
CIS 422/522

CIS 422/522 Winter 2013! 5!

View of SE in this Course!

•  The purpose of Software Engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.!
–  Intellectual control means that we are able make

rational choices based on an understanding of the
downstream effects of those choices (e.g., on
system properties).!

–  Managerial control means we likewise control
development resources (budget, schedule,
personnel). !

CIS 422/522 Winter 2013! 6!

Course Approach!

•  Learn methods for acquiring and maintaining
control of software projects!

•  Managerial control (most of focus to date)!
–  Team organization and people management!
–  Organizing people and tasks !
–  Planning and guiding development!

•  Intellectual control!
–  Choosing appropriate order for decisions and

ensuring feedback/correction!
–  Establishing and communicating exactly what

should be built!

CIS 422/522 Winter 2013! 7!

Teamwork and  
Group Dynamics 

!

CIS 422/522 Winter 2013! 8!

What do software developers do?!

-Technical excellence is not enough!
Must understand how to work in teams!

•  Most time is not spent coding!
•  So how do they spend their time?!
•  IBM study (McCue, 1978):!

–  50% team interactions!
–  30% working alone (coding & related)!
–  20% not directly productive!

3!
CIS 422/522

CIS 422/522 Winter 2013! 9!

Being a Good Team Member!

•  Attributes most valued by other team
members !
–  Dependability!

•  When you say you’ll do something, you do it!
•  Correctly!
•  On time!

–  Carrying your own weight (doing a fair share of the
work)!

•  People will overlook almost everything else if
you do these!

CIS 422/522 Winter 2013! 10!

Consensus decision making!

Consensus takes time and work, but is worthwhile

•  Consensus is not counting votes!
–  Democracy is 51% agreement!
–  Unanimity is 100% agreement!

•  Consensus is neither!
–  Everyone has their say!
–  Everyone accepts the decision, even if they  

don't prefer it!
–  It is "buying in" by group as a whole, including

those who disagree!
•  Usually best approach for peer groups!

CIS 422/522 Winter 2013! 11!

The Software Lifecycle!

CIS 422/522 Winter 2013! 12!

Need to Organize the Work!

•  Nature of a software project!
–  Software development produces a set of interlocking,

interdependent work products!
•  E.g. Requirements -> Design -> Code!

–  Implies dependencies between tasks!
–  Implies dependencies between people!

•  Must organize the work such that:!
–  Every task gets done!
–  Tasks get done in the right order!
–  Tasks are done by the right people!
–  The product has the desired qualities!
–  The end product is produced on time!

4!
CIS 422/522

CIS 422/522 Winter 2013! 13!

Usefulness of Life Cycle Models!

•  Application of “divide-and-conquer” to
software processes and products!
–  Goal: identify distinct and relatively independent

phases and products!
–  Can then address each somewhat separately!

•  Intended use!
–  Provide guidance to developers in what to produce

and when to produce it!
–  Provide a basis for planning and assessing

development progress!
•  Never an accurate representation of what

really goes on!
CIS 422/522 Winter 2013! 14!

A “Waterfall” Model!

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

1.  As a guide: does not address 
some common development risks!
•  What happens if requirements 

are wrong?!
•  Is scheduling or budget is wrong?!

2.  As a model: unrealistic as a  
model of any real development!
•  How do real developments 

differ?!
•  Models are abstractions of reality!

Problems of temporal!
distance!

CIS 422/522 Winter 2013! 15!

Other Characteristic Models!

CIS 422/522 Winter 2013! 16!

Choosing a Process to Use!

•  Balance goals and risks!
•  Objective: proceed as systematically as possible

from a statement of system goals to an
implementation that demonstrably meets those
goals !
–  Understand that any process description is an

idealization!
–  Always must compensate for deviation from the ideal

(e.g., by iteration)!
•  Risk: Anything that might lead to a loss of control

is a project risk!
–  E.g., won’t meet the schedule, will overspend budget,

will fail to deliver the proper functionality!

5!
CIS 422/522

CIS 422/522 Winter 2013! 17!

A Software Engineering Perspective!

•  Choose processes, methods, notations, etc.
to provide an appropriate level of control for
the given product and context!
–  Sufficient control to achieve results!
–  No more than necessary to contain cost and effort!
–  Developers should perceive time spent on process

as useful!

CIS 422/522 Winter 2013! 18!

Example!
•  Project 1 requirements and constraints!

1.  Deadline and resources (time, personnel) are fixed!
2.  Delivered functionality and quality can vary (though they affect the

grade)!
3.  Risks: !

1.  Missing the deadline!
2.  Technology problems!
3.  Inadequate requirements!
4.  Learning while doing!

•  Process model!
–  All of these risks can be addressed to some extent by building

some version of the product, then improving on it as time allows
(software & docs.)!

–  Technology risk requires building/finding software and trying it
(prototyping)!

–  Most forms of incremental development will address these!

CIS 422/522 Winter 2013! 19!

Project Planning and Management !

CIS 422/522 Winter 2013! 20!

From Process to Plan!

•  Process definition manifests itself in the project
plan!
–  Process definition is an abstraction!
–  Many possible ways of implementing the same process!

•  Project plan makes process concrete, it assigns !
–  People to roles!
–  Artifacts to deliverables and milestones!
–  Activities to tasks over time!

•  Project plan should be one of the first products
but expect it to evolve!

6!
CIS 422/522

CIS 422/522 Winter 2013! 21!

Document Types and Purposes!

•  Management documents!
–  Basis for managerial control of resources!

•  Calendar time, skilled man-hours budget!
•  Other organizational resources!

–  Project plan, WBS, Development schedule!
–  Utility: allows managers to track actual against expected use

of resources!
•  Development documents!

–  Basis for intellectual control of products (content and
qualities) !

–  ConOps, Requirements (SRS), Architecture, Detail design,
etc.!

–  Utility: !
•  Vehicles for making and recording development decisions!
•  Allows developers to track decisions from stakeholder needs to

implementation!

CIS 422/522 Winter 2013! 22!

Planning Tools!

•  Review in book!
•  Work Breakdown Structure: decompose tasks and

allocate responsibilities!
–  If incomplete, some tasks may not be done!
–  If imprecise, people do not know exactly what to do. May do

too little or the wrong thing!
–  Without a complete set of tasks, schedules are unrealistic!

•  PERT charts: identify where ordering of tasks may
cause problems !
–  Represent precedence or resource constraints!
–  Identify critical path!

•  Gantt Charts: method for visualizing project schedule!
•  Note that these address problems our projects have

encountered!

CIS 422/522 Winter 2013! 23!

Document Types and Purposes!

•  Development documents!
–  Basis for intellectual control!

•  Used for making and communicating engineering decisions
(requirements, design, implementation, verification, etc.)!

•  Allows developers to track decisions from stakeholder needs to
implementation!

–  Basis for communicating decisions!
–  ConOps, SRS, Architecture, Detail design, etc.!

CIS 422/522 Winter 2013! 24!

Requirements!

Problem Analysis!
Requirements Specification!

7!
CIS 422/522

CIS 422/522 Winter 2013! 25!

What is a “software requirement?”!

•  A description of something the software must
do or property it must have!

•  The set of system requirements denote the
problem to be solved and any constraints on
the solution!
–  Ideally, requirements specify precisely what the

software must do without describing how to do it!
–  Any system that meets requirements should be an

acceptable implementation!

CIS 422/522 Winter 2013! 26!

Importance of Getting Requirements Right!

2. The later that software errors are!
 detected, the more costly they are!

 to correct!

1. The majority of software errors!
 are introduced early in software!

 development!

1

2

5

10

20

50

100

design unit test,
 integration operation

requirements code
 debug

acceptance initial
 test

Phase in which error detected

0

10

20

30

40

50

requirements
and

functional

analysis

design construction and
system

development test

acceptance
testing and
operation

Development Phase

$1 error
$100 error

CIS 422/522 Winter 2013! 27!

Requirements Phase Goals!

•  What does “getting the requirements right” mean
in the systems development context?!

•  Only three goals!
1.  Understand precisely what is required of the software!
2.  Communicate that understanding to all of the parties

involved in the development (stakeholders)!
3.  Control production to ensure the final system satisfies

the requirements!
•  Sounds easy but hard to do in practice, observed

this and the resulting problems in projects!
•  Understanding what makes these goals difficult

to accomplish helps us understand how to
mitigate the risks!

CIS 422/522 Winter 2013! 28!

What makes requirements difficult?!

•  Comprehension (understanding)!
–  People don’t (really) know what they want (…until they see it)!
–  Superficial grasp is insufficient to build correct software!

•  Communication!
–  People work best with regular structures, conceptual coherence, and

visualization!
–  Software’s conceptual structures are complex, arbitrary, and difficult to

visualize!
•  Control (predictability, manageability)!

–  Difficult to predict which requirements will be hard to meet!
–  Requirements change all the time!
–  Together can make planning unreliable, cost and schedule

unpredictable!
•  Inseparable Concerns!

–  Many requirements issues cannot be cleanly separated (I.e., decisions
about one necessarily impact another)!

–  Difficult to apply “divide and conquer,” must make tradeoffs!
•  Implies all the requirements goals are difficult to achieve!

8!
CIS 422/522

CIS 422/522 Winter 2013! 29!

Purposes and Stakeholders!

•  Many potential stakeholders using requirements
for different purposes!
–  Customers: the requirements document what should

be delivered !
–  Managers: provides a basis for scheduling and a

yardstick for measuring progress !
–  Software Designers: provides the “design-to”

specification!
–  Coders: defines the range of acceptable

implementations !
–  Quality Assurance: basis for validation, test planning,

and verification!
–  Also: potentially Marketing, regulatory agencies, etc.!

CIS 422/522 Winter 2013! 30!

Needs of Different Audiences!

•  Customer/User!
–  Focus on problem

understanding!
–  Use language of problem

domain!
–  Technical if problem space

is technical!

Developer

Customer

Requiremen
ts

Analyst

Problem Understanding/!
Business Needs!

Detailed technical!
Requirements!

•  Development organization!
–  Focus on system/software

solutions!
–  Use language of solution

space (software)!
–  Precise and detailed enough

to write code, test cases,
etc.!

CIS 422/522 Winter 2013! 31!

Documentation Approaches!

•  ConOps: informal requirements to describe the
system’s capabilities from the customer/user point of
view!
–  Answer the questions, “What is the system for?” and “How

will the user use it?”!
–  Tells a story: “What does this system do for me?”!
–  Helps to use a standard template!

•  SRS: formal, technical requirements for development
team !
–  Purpose is to answer specific technical questions about the

requirements quickly and precisely!
•  Answers, “What should the system output in this circumstance?”!
•  Reference, not a narrative, does not “tell a story”!

–  Precise, unambiguous, complete, and consistent as practical!

CIS 422/522 Winter 2013! 32!

Informal Techniques!

•  Most requirements specification methods are informal!
–  Natural language specification!
–  Use cases!
–  Mock-ups (pictures)!
–  Story boards!

•  Benefits!
–  Requires little technical expertise to read/write!
–  Useful for communicating with a broad audience!
–  Useful for capturing intent (e.g., how does the planned system

address customer needs, business goals?)!
•  Drawbacks!

–  Inherently ambiguous, imprecise!
–  Cannot effectively establish completeness, consistency!
–  However, can add rigor with standards, templates, etc.!

•  Exemplified by discussion of use cases!

9!
CIS 422/522

CIS 422/522 Winter 2013! 33!

Scenario Analysis and Use Cases!

•  Applying scenario analysis in the development
process!

•  Requirements Elicitation!
–  Identify stakeholders who interact with the system!
–  Collect “user stories” - how people would interact with the

system to perform specific tasks!
•  Requirements Specification!

–  Record as use-cases with standard format!
–  Use templates to standardize, drive elicitation!

•  Requirements verification and validation!
–  Review use-cases for consistency, completeness, user

acceptance!
–  Apply to support prototyping!
–  Verify against code (e.g., use-case based testing)!

CIS 422/522 Winter 2013! 34!

1 Use Case: Manage Reports

1.1 Description
This Use Case describes operation for Creating, Saving, Deleting, Printing, Exiting and
Displaying reports.

1.2 Actors
User
Project database

1.3 Triggers
Program Manager selects operations from menu.

1.4 Flow of events

1.4.1 Basic Flow
1. User chooses desired report by selecting “Report” -> “Open” from the menu bar
2. System displays report to screen
3. User selects desired report layout using Use Case Specify Report
4. Steps 2 and 3 are repeated until user is satisfied
5. User can Save or Print report using use case Save Report or Print Report
6. User Exits report by selecting “Exit” from the “File” menu

1.4.2 Alternative Flows

1.4.2.1 Create New Report
1. User selects “Create New Report” from file menu
2. …

1.4.2.2 Delete Report
……………..

1.4.3 Preconditions
etc

!

A systematic approach to
use cases!
•  Uses a standard template!

•  Easier to check, read!
•  Still informal!

Use Cases!

CIS 422/522 Winter 2013! 35!

Better example of Use Case
content. Focuses on requirements
rather than design details

CIS 422/522 Winter 2013! 36!

Benefits and Drawbacks!

•  Use cases can be an effective tool for:!
–  Identifying key users and their tasks!
–  Characterizing how the system should work from each

user’s point of view!
–  Communicating to non-technical stakeholders!

•  Generally inadequate for detailed technical
requirements!
–  Difficult to find specific requirements!
–  Inherently ambiguous and imprecise!
–  Cannot establish completeness or consistency!
–  Possible exception: applications doing simple user-

centric tasks with little computation !

10!
CIS 422/522

CIS 422/522 Winter 2013! 37!

Technical Specification!

The SRS!
The role of rigorous specification!

CIS 422/522 Winter 2013! 38!

Requirements Documentation!

•  Is a detailed requirements specification necessary?!
•  How do we know what “correct” means?!

–  How do we decide exactly what capabilities the modules
should provide?!

–  How do we know which test cases to write and how to
interpret the results?!

–  How do we know when we are done implementing?!
–  How do we know if we’ve built what the customer asked for

(may be distinct from “want” or “need”)?!
–  Etc…!

•  Correctness is a relation between a spec and an
implementation (M. Young)!
–  Implication: until you have a spec, you have no standard for

“correctness”!

CIS 422/522 Winter 2013! 39!

Technical Requirements!

•  Focus on developing a technical specification!
–  Should be straight-forward to determine

acceptable inputs and outputs!
–  Can systematically check completeness

consistency!
•  Provides!

–  Detailed specification of precisely what to build!
–  Design-to specification !
–  Build-to specification for coders!
–  Characterizes expected outputs for testers!

CIS 422/522 Winter 2013! 40!

The Good News!

•  A little rigor in the right places can help a lot!
–  Adding formality is not an all-or-none decision!
–  Use it where it matters most to start (critical parts,

potentially ambiguous parts)!
–  Often easier, less time consuming than trying to

say the same thing in prose!
•  E.g. in describing conditions or cases!

–  Use predicates (i.e., basic Boolean expressions)!
–  Use tables where possible!

11!
CIS 422/522

CIS 422/522 Winter 2013! 41!

Graphic Notations for Simple Machines!

CIS 422/522 Winter 2013! 42!

Quality Requirements!

CIS 422/522 Winter 2013! 43!

Terminology!

•  Avoid “functional” and non-functional" classification!
•  Behavioral Requirements – any information

necessary to determine if the run-time behavior of a
given implementation constitutes an acceptable
system!
–  All quantitative constraints on the system's run-time behavior!
–  Other objective measures (safety, performance, fault-

tolerance)!
–  In theory all can be validated by observing the running

system and measuring the results!
•  Developmental Quality Attributes - any constraints on

the system's static construction!
–  Maintainability, reusability, ease of change (mutability)!
–  Measures of these qualities are necessarily relativistic (I.e.,

in comparison to something else!

CIS 422/522 Winter 2013! 44!

Behavioral vs. Developmental !
Behavioral (observable)!

•  Performance!
•  Security !
•  Availability !
•  Reliability!
•  Usability 

!
!

! 
Properties resulting from the
properties of components,
connectors and interfaces
that exist at run time.!

Developmental Qualities!
•  Modifiability(ease of change)!
•  Portability!
•  Reusability!
•  Ease of integration !
•  Understandability!
•  Support concurrent

development 
!
!Properties resulting from the
properties components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.!

12!
CIS 422/522

CIS 422/522 Winter 2013! 45!

Specifying Quality Requirements!

•  When using natural language, write
objectively verifiable requirements when
possible!
–  Load handling: The system will support a minimum

of 15 concurrent users while staying with required
performance bounds.!

–  Maintainability: “The following kinds of requirement
changes will require changes in no more than one
module of the system…”!

–  Performance: !
•  “System output X has a deadline of 5 ms from the input

event.”!
•  “System output Y must be updated at a frequency of no

less than 20 ms.”!
!

CIS 422/522 Winter 2013! 46!

Requirements Validation and Verification!
•  Feedback-control for requirements!
•  Should answer two distinct questions: !

–  Validation: “Are we building to the right requirements?”!
–  Verification: “Are we building what we specified?”!
–  The book is confused on the distinction!

•  Checking internal consistency (agreement with itself) is verification!
•  Checking external consistency (agreement with the world) is validation!

•  Validation requires going back to the stakeholders: can use
many techniques!
–  Review of specifications!
–  Prototyping!
–  Story-boarding!
–  Use case walkthroughs!
–  Review software iterations!

•  Verification requires checking work products against
specifications!
–  Review!
–  Testing!
–  Formal modeling and analysis!

CIS 422/522 Winter 2013! 47!

Real meaning of “control”!

•  What does “control” really mean?!
•  Can we really get everything under control

then run on autopilot?!
•  Rather control requires continuous feedback

loop!
1.  Define ideal!
2.  Make a step!
3.  Measure deviation from idea!
4.  Correct direction or redefine ideal and  

go back to 2!

CIS 422/522 Winter 2013! 48!

Questions?!

13!
CIS 422/522

CIS 422/522 Winter 2013! 49!

Iteration 1 Reports!

•  For Mon: prepare an 10 minute presentation with
slides !
–  Practice timing, handoffs!
–  Set up computers in advance for quick changeover!

•  Status against project plan !
–  What was planned for this date? !
–  What was actually produced (status of work products and

deliverables even if not complete)? !
–  Quick demo if possible!

•  Lessons learned and planned changes !
–  How effective was project planning? !
–  What were the root causes of any schedule delays? !
–  Was the risk management approach effective? !

•  What do you plan to do differently for Iteration 2? !

CIS 422/522 Winter 2013! 50!

Evaluating Your Software!

•  Read the “Project Grading” page!
•  It is part of your job to make your software easy

to access and use!
•  I usually do not have time to search for your links,

code, directions, etc.!
–  Put links to working site on Home page!
–  Put code, documentation on Assembla site!

•  Test it using someone unfamiliar with accessing
and using it!
–  Can they follow your directions? User’s guide?!
–  Use someone similar to expected users!

